Number System Conversion
There are many strategies or techniques which may be used to transform numbers from one base to some other. We'll show here the subsequent −
Decimal to Other Base System
Other Base System to Decimal
Other Base System to Non-Decimal
Shortcut technique − Binary to Octal
Shortcut approach − Octal to Binary
Shortcut technique − Binary to Hexadecimal
Shortcut technique − Hexadecimal to Binary
Decimal to Other Base System
Steps
Step 1 − Divide the decimal number to be transformed by using the price of the new base.
Step 2 − Get the the rest from Step 1 as the rightmost digit (least sizable digit) of latest base variety.
Step three − Divide the quotient of the previous divide by way of the new base.
Step four − Record the the rest from Step three as the following digit (to the left) of the new base quantity.
Repeat Steps 3 and 4, getting remainders from proper to left, until the quotient will become zero in Step 3.
The ultimate the rest hence received might be the Most Significant Digit (MSD) of the brand new base variety.
Example −
Decimal Number: 2910
Calculating Binary Equivalent −
Step Operation Result Remainder
Step 1 29 / 2 14 1
Step 2 14 / 2 7 0
Step 3 7 / 2 three 1
Step 4 three / 2 1 1
Step 5 1 / 2 0 1
As cited in Steps 2 and 4, the remainders ought to be organized in the reverse order in order that the first remainder will become the Least Significant Digit (LSD) and the closing remainder turns into the Most Significant Digit (MSD).
Decimal Number − 2910 = Binary Number − 111012.
Other Base System to Decimal System
Steps
Step 1 − Determine the column (positional) price of every digit (this depends on the location of the digit and the bottom of the quantity system).
Step 2 − Multiply the obtained column values (in Step 1) by using the digits within the corresponding columns.
Step three − Sum the products calculated in Step 2. The total is the equal cost in decimal.
Example
Binary Number − 111012
Calculating Decimal Equivalent −
Step Binary Number Decimal Number
Step 1 111012 ((1 × 24) + (1 × 23) + (1 × 22) + (zero × 21) + (1 × 20))10
Step 2 111012 (sixteen + eight + four + 0 + 1)10
Step three 111012 2910
Binary Number − 111012 = Decimal Number − 2910
Other Base System to Non-Decimal System
Steps
Step 1 − Convert the unique number to a decimal variety (base 10).
Step 2 − Convert the decimal wide variety so received to the new base quantity.
Example
Octal Number − 258
Calculating Binary Equivalent −
Step 1 − Convert to Decimal
Step Octal Number Decimal Number
Step 1 258 ((2 × 81) + (5 × 80))10
Step 2 258 (sixteen + 5 )10
Step 3 258 2110
Octal Number − 258 = Decimal Number − 2110
Step 2 − Convert Decimal to Binary
Step Operation Result Remainder
Step 1 21 / 2 10 1
Step 2 10 / 2 five zero
Step three five / 2 2 1
Step 4 2 / 2 1 zero
Step 5 1 / 2 zero 1
Decimal Number − 2110 = Binary Number − 101012
Octal Number − 258 = Binary Number − 101012
Shortcut method - Binary to Octal
Steps
Step 1 − Divide the binary digits into businesses of 3 (beginning from the proper).
Step 2 − Convert every institution of three binary digits to at least one octal digit.
Example
Binary Number − 101012
Calculating Octal Equivalent −
Step Binary Number Octal Number
Step 1 101012 010 one hundred and one
Step 2 101012 28 fifty eight
Step 3 101012 258
Binary Number − 101012 = Octal Number − 258
Shortcut technique - Octal to Binary
Steps
Step 1 − Convert every octal digit to a 3 digit binary range (the octal digits can be handled as decimal for this conversion).
Step 2 − Combine all the resulting binary corporations (of 3 digits every) into a unmarried binary number.
Example
Octal Number − 258
Calculating Binary Equivalent −
Step Octal Number Binary Number
Step 1 258 210 510
Step 2 258 0102 1012
Step three 258 0101012
Octal Number − 258 = Binary Number − 101012
Shortcut technique - Binary to Hexadecimal
Steps
Step 1 − Divide the binary digits into companies of 4 (beginning from the proper).
Step 2 − Convert each organization of 4 binary digits to one hexadecimal symbol.
Example
Binary Number − 101012
Calculating hexadecimal Equivalent −
Step Binary Number Hexadecimal Number
Step 1 101012 0001 0101
Step 2 101012 110 510
Step three 101012 1516
Binary Number − 101012 = Hexadecimal Number − 1516
Shortcut approach - Hexadecimal to Binary
Steps
Step 1 − Convert each hexadecimal digit to a 4 digit binary quantity (the hexadecimal digits can be treated as decimal for this conversion).
Step 2 − Combine all the ensuing binary organizations (of 4 digits each) into a single binary wide variety.
Example
Hexadecimal Number − 1516
Calculating Binary Equivalent −
Step Hexadecimal Number Binary Number
Step 1 1516 a hundred and ten 510
Step 2 1516 00012 01012
Step 3 1516 000101012
Hexadecimal Number − 1516 = Binary Number − 101012
0 Comments